How Do Scientists Determine the Age of Dinosaur Bones?

Radiometric Dating Does Work!

Radiometric dating

Radiometric dating still reliable (again), research shows

Dating Rocks and Fossils Using Geologic Methods

Radiometric Dating: Methods, Uses & the Significance of Half-Life

The most widely known form of radiometric dating is carbon dating. This is what archaeologists use to determine the age of human-made artifacts. But carbon dating won’t work on dinosaur bones. The half-life of carbon is only 5, years, so carbon dating is only effective on samples that are less than 50, years old. Dinosaur bones, on the other hand, are millions of years old — some fossils are billions of years old. To determine the ages of these specimens, scientists need an isotope with a very long half-life.

How Do Scientists Determine the Age of Dinosaur Bones?

As a member, you’ll also get unlimited access to over 75, lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed. Already registered? Log in here for access. Log in or sign up to add this lesson to a Custom Course. Log in or Sign up. Gillaspy has taught health science at University of Phoenix and Ashford University and has a degree from Palmer College of Chiropractic. The aging process in human beings is easy to see.

As we age, our hair turns gray, our skin wrinkles and our gait slows. However, rocks and other objects in nature do not give off such obvious clues about how long they have been around. So, we rely on radiometric dating to calculate their ages. Radiometric dating, or radioactive dating as it is sometimes called, is a method used to date rocks and other objects based on the known decay rate of radioactive isotopes. Different methods of radiometric dating can be used to estimate the age of a variety of natural and even man-made materials.

The methods work because radioactive elements are unstable, and they are always trying to move to a more stable state. So, they do this by giving off radiation. This process by which an unstable atomic nucleus loses energy by releasing radiation is called radioactive decay. The thing that makes this decay process so valuable for determining the age of an object is that each radioactive isotope decays at its own fixed rate, which is expressed in terms of its half-life.

So, if you know the radioactive isotope found in a substance and the isotope’s half-life, you can calculate the age of the substance. So, what exactly is this thing called a half-life? Well, a simple explanation is that it is the time required for a quantity to fall to half of its starting value. So, you might say that the ‘full-life’ of a radioactive isotope ends when it has given off all of its radiation and reaches a point of being non-radioactive. When the isotope is halfway to that point, it has reached its half-life.

There are different methods of radiometric dating that will vary due to the type of material that is being dated. For example, uranium-lead dating can be used to find the age of a uranium-containing mineral. It works because we know the fixed radioactive decay rates of uranium, which decays to lead, and for uranium, which decays to lead So, we start out with two isotopes of uranium that are unstable and radioactive. They release radiation until they eventually become stable isotopes of lead.

These two uranium isotopes decay at different rates. In other words, they have different half-lives. The half-life of the uranium to lead is 4. The uranium to lead decay series is marked by a half-life of million years. These differing rates of decay help make uranium-lead dating one of the most reliable methods of radiometric dating because they provide two different decay clocks. This provides a built-in cross-check to more accurately determine the age of the sample.

Uranium is not the only isotope that can be used to date rocks; we do see additional methods of radiometric dating based on the decay of different isotopes. For example, with potassium-argon dating , we can tell the age of materials that contain potassium because we know that potassium decays into argon with a half-life of 1. With rubidium-strontium dating , we see that rubidium decays into strontium with a half-life of 50 billion years.

By anyone’s standards, 50 billion years is a long time. In fact, this form of dating has been used to date the age of rocks brought back to Earth from the moon. So, we see there are a number of different methods for dating rocks and other non-living things, but what if our sample is organic in nature? For example, how do we know that the Iceman, whose frozen body was chipped out of glacial ice in , is 5, years old?

Well, we know this because samples of his bones and hair and even his grass boots and leather belongings were subjected to radiocarbon dating. Radiocarbon dating , also known as carbon dating or simply carbon dating, is a method used to determine the age of organic material by measuring the radioactivity of its carbon content.

So, radiocarbon dating can be used to find the age of things that were once alive, like the Iceman. And this would also include things like trees and plants, which give us paper and cloth. So, radiocarbon dating is also useful for determining the age of relics, such the Dead Sea Scrolls and the Shroud of Turin. With radiocarbon dating, the amount of the radioactive isotope carbon is measured. Compared to some of the other radioactive isotopes we have discussed, carbon’s half-life of 5, years is considerably shorter, as it decays into nitrogen Carbon is continually being created in the atmosphere due to the action of cosmic rays on nitrogen in the air.

Carbon combines with oxygen to create carbon dioxide. Because plants use carbon dioxide for photosynthesis, this isotope ends up inside the plant, and because animals eat plants, they get some as well. When a plant or an animal dies, it stops taking in carbon The existing carbon within the organism starts to decay back into nitrogen, and this starts our clock for radiocarbon dating. A scientist can take a sample of an organic material when it is discovered and evaluate the proportion of carbon left in the relic to determine its age.

Let’s review. Radiometric dating is a method used to date rocks and other objects based on the known decay rate of radioactive isotopes. The decay rate is referring to radioactive decay , which is the process by which an unstable atomic nucleus loses energy by releasing radiation. Each radioactive isotope decays at its own fixed rate, which is expressed in terms of its half-life or, in other words, the time required for a quantity to fall to half of its starting value.

There are different methods of radiometric dating. Uranium-lead dating can be used to find the age of a uranium-containing mineral. Uranium decays to lead, and uranium decays to lead The two uranium isotopes decay at different rates, and this helps make uranium-lead dating one of the most reliable methods because it provides a built-in cross-check. Additional methods of radiometric dating, such as potassium-argon dating and rubidium-strontium dating , exist based on the decay of those isotopes.

Radiocarbon dating is a method used to determine the age of organic material by measuring the radioactivity of its carbon content. With radiocarbon dating, we see that carbon decays to nitrogen and has a half-life of 5, years. To unlock this lesson you must be a Study. Create your account. Already a member? Log In. Did you know… We have over college courses that prepare you to earn credit by exam that is accepted by over 1, colleges and universities.

You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level. To learn more, visit our Earning Credit Page. Not sure what college you want to attend yet? The videos on Study. Sign Up. Explore over 4, video courses. Find a degree that fits your goals. Try it risk-free for 30 days. Register to view this lesson Are you a student or a teacher?

I am a student I am a teacher. Try Study. What teachers are saying about Study. Coming up next: Conditions of Fossil Preservation: Just checking in. Are you still watching? Keep playing. Your next lesson will play in 10 seconds. Add to Add to Add to. Want to watch this again later? Create an account. What is Radioactive Dating? Principles of Radiometric Dating.

Methods of Geological Dating: Numerical and Relative Dating. Relative Dating with Fossils: Index Fossils as Indicators of Time. What is Relative Dating? What is the Age of the Solar System?

Geologists use radiometric dating to estimate how long ago rocks formed, and it to the quantity of stable daughter atoms in the rock, scientists can estimate the. Radiometric dating is used to estimate the age of rocks and other objects based on the fixed decay rate of radioactive isotopes. Learn about half-life and how it is .

As a member, you’ll also get unlimited access to over 75, lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed. Already registered? Log in here for access. Log in or sign up to add this lesson to a Custom Course.

Geologists use radiometric dating to estimate how long ago rocks formed, and to infer the ages of fossils contained within those rocks.

Geologists often need to know the age of material that they find. They use absolute dating methods, sometimes called numerical dating, to give rocks an actual date, or date range, in number of years. This is different to relative dating, which only puts geological events in time order.

Radiometric dating

Radiometric dating , radioactive dating or radioisotope dating is a technique used to date materials such as rocks or carbon , in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. Together with stratigraphic principles , radiometric dating methods are used in geochronology to establish the geologic time scale. By allowing the establishment of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change. Radiometric dating is also used to date archaeological materials, including ancient artifacts. Different methods of radiometric dating vary in the timescale over which they are accurate and the materials to which they can be applied.

Radiometric dating still reliable (again), research shows

Despite seeming like a relatively stable place, the Earth’s surface has changed dramatically over the past 4. Mountains have been built and eroded, continents and oceans have moved great distances, and the Earth has fluctuated from being extremely cold and almost completely covered with ice to being very warm and ice-free. These changes typically occur so slowly that they are barely detectable over the span of a human life, yet even at this instant, the Earth’s surface is moving and changing. As these changes have occurred, organisms have evolved, and remnants of some have been preserved as fossils. A fossil can be studied to determine what kind of organism it represents, how the organism lived, and how it was preserved. However, by itself a fossil has little meaning unless it is placed within some context. The age of the fossil must be determined so it can be compared to other fossil species from the same time period. Understanding the ages of related fossil species helps scientists piece together the evolutionary history of a group of organisms. For example, based on the primate fossil record, scientists know that living primates evolved from fossil primates and that this evolutionary history took tens of millions of years.

Radiometric dating of rocks and minerals using naturally occurring, long-lived radioactive isotopes is troublesome for young-earth creationists because the techniques have provided overwhelming evidence of the antiquity of the earth and life.

Recent puzzling observations of tiny variations in nuclear decay rates have led some to question the science of using decay rates to determine the relative ages of rocks and organic materials. Scientists from the National Institute of Standards and Technology NIST , working with researchers from Purdue University, the University of Tennessee, Oak Ridge National Laboratory and Wabash College, tested the hypothesis that solar radiation might affect the rate at which radioactive elements decay and found no detectable effect.

Dating Rocks and Fossils Using Geologic Methods

It is an accurate way to date specific geologic events. This is an enormous branch of geochemistry called Geochronology. There are many radiometric clocks and when applied to appropriate materials, the dating can be very accurate. As one example, the first minerals to crystallize condense from the hot cloud of gasses that surrounded the Sun as it first became a star have been dated to plus or minus 2 million years!! That is pretty accurate!!! Other events on earth can be dated equally well given the right minerals. For example, a problem I have worked on involving the eruption of a volcano at what is now Naples, Italy, occurred years ago with a plus or minus of years. Yes, radiometric dating is a very accurate way to date the Earth. We know it is accurate because radiometric dating is based on the radioactive decay of unstable isotopes. For example, the element Uranium exists as one of several isotopes, some of which are unstable. When an unstable Uranium U isotope decays, it turns into an isotope of the element Lead Pb. We call the original, unstable isotope Uranium the “parent”, and the product of decay Lead the “daughter”.

Radiometric Dating: Methods, Uses & the Significance of Half-Life

О… Боже ты. – В чем дело? – спросил Джабба. Все прильнули к экрану и сокрушенно ахнули. Крошечная сноска гласила: Предел ошибки составляет 12. Разные лаборатории приводят разные цифры.

А что по этому поводу думает Энсей Танкадо. – Я ничем не обязан мистеру Танкадо. Он зря мне доверился. Ключ стоит в сотни раз больше того, что он платит мне за его хранение. – Извините, но ваш ключ сам по себе ничего не стоит. Как только Танкадо узнает о том, что вы сделали, он опубликует свою копию, и рынок рухнет. – Вы получите оба экземпляра, – прозвучал голос.

Это уже не новость, директор. – Джабба сплюнул. – От взрывной волны я чуть не упал со стула. Где Стратмор. – Коммандер Стратмор погиб.

Хейл хмыкнул себе под нос и убрал упаковку тофу. Затем взял бутылку оливкового масла и прямо из горлышка отпил несколько глотков. Он считал себя большим знатоком всего, что способствовало укреплению здоровья, и утверждал, что оливковое масло очищает кишечник. Он вечно навязывал что-то коллегам, например морковный сок, и убеждал их, что нет ничего важнее безукоризненного состояния кишечника.

Хейл поставил масло на место и направился к своему компьютеру, располагавшемуся прямо напротив рабочего места Сьюзан. Даже за широким кольцом терминалов она почувствовала резкий запах одеколона и поморщилась.

ГЛАВА 12 Дэвиду Беккеру приходилось бывать на похоронах и видеть мертвых, но на этот раз его глазам открылось нечто особенно действующее на нервы. Это не был тщательно загримированный покойник в обитом шелком гробу. Обнаженное тело, бесцеремонно брошенное на алюминиевый стол. Глаза, которые еще не приобрели отсутствующего безжизненного взгляда, закатились вверх и уставились в потолок с застывшим в них выражением ужаса и печали. – Dоnde estan sus efectos? – спросил Беккер на беглом кастильском наречии.